Drug: Breo Ellipta

BREO ELLIPTA is a combination of fluticasone furoate (an ICS) and vilanterol (a LABA). One active component of BREO ELLIPTA is fluticasone furoate, a synthetic trifluorinated corticosteroid having the chemical name (6α,11β,16α,17α)-6,9-difluoro-17- {[(fluoro-methyl)thio]carbonyl}-11-hydroxy- 16-methyl-3 -oxoandrosta- 1,4-dien- 17-yl 2- furancarboxylate and the following chemical structure: Fluticasone furoate is a white powder with a molecular weight of 538.6, and the empirical formula is C27H29F3O6S. It is practically insoluble in water. The other active component of BREO ELLIPTA is vilanterol trifenatate, a LABA with the chemical name triphenylacetic acid-4-{(1R)-2-[(6-{2-[2,6-dicholorobenzyl)oxy]ethoxy} hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol (1:1) and the following chemical structure: Vilanterol trifenatate is a white powder with a molecular weight of 774.8, and the empirical formula is C24H33Cl2NO5•C20H16O2. It is practically insoluble in water. BREO ELLIPTA is a light grey and pale blue plastic inhaler containing 2 double-foil blister strips. Each blister on one strip contains a white powder mix of micronized fluticasone furoate (100 mcg) and lactose monohydrate (12.4 mg), and each blister on the other strip contains a white powder mix of micronized vilanterol trifenatate (40 mcg equivalent to 25 mcg of vilanterol), magnesium stearate (125 mcg), and lactose monohydrate (12.34 mg). The lactose monohydrate contains milk proteins. After the inhaler is activated, the powder within both blisters is exposed and ready for dispersion into the airstream created by the patient inhaling through the mouthpiece. Under standardized in vitro test conditions, BREO ELLIPTA delivers 92 mcg of fluticasone furoate and 22 mcg of vilanterol per blister when tested at a flow rate of 60 L/min for 4 seconds. In adult subjects with obstructive lung disease and severely compromised lung function (COPD with FEV1/FVC less than 70% and FEV1 less than 30% predicted or FEV1 less than 50% predicted plus chronic respiratory failure), mean peak inspiratory flow through the ELLIPTA inhaler was 66.5 L/min (range: 43.5 to 81.0 L/min). The actual amount of drug delivered to the lung will depend on patient factors, such as inspiratory flow profile. Last reviewed on RxList: 3/20/2015
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

LABA, such as vilanterol, one of the active ingredients in BREO ELLIPTA, increase the risk of asthma-related death. BREO ELLIPTA is not indicated for the treatment of asthma. [See BOXED WARNINGS and WARNINGS AND PRECAUTIONS] Systemic and local corticosteroid use may result in the following:
  • Increased risk of pneumonia in COPD [see WARNINGS AND PRECAUTIONS]
  • Increased risk for decrease in bone mineral density [see WARNINGS AND PRECAUTIONS]
Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in practice. The clinical program for BREO ELLIPTA included 7,700 subjects with COPD in two 6-month lung function trials, two 12-month exacerbation trials, and 6 other trials of shorter duration. A total of 2,034 subjects have received at least 1 dose of BREO ELLIPTA 100 mcg/25 mcg, and 1,087 subjects have received higher doses of fluticasone furoate/vilanterol. The safety data described below are based on the confirmatory 6-month and 12-month trials. Adverse reactions observed in the other trials were similar to those observed in the confirmatory trials. 6-Month Trials The incidence of adverse reactions associated with BREO ELLIPTA in Table 1 is based on 2 placebo-controlled, 6-month clinical trials (Trials 1 and 2; n = 1,224 and n = 1,030, respectively). Of the 2,254 subjects, 70% were male and 84% were Caucasian. They had a mean age of 62 years and an average smoking history of 44 pack years, with 54% identified as current smokers. At screening, the mean postbronchodilator percent predicted FEV1 was 48% (range: 14% to 87%), the mean postbronchodilator FEV1/forced vital capacity (FVC) ratio was 47% (range: 17% to 88%), and the mean percent reversibility was 14% (range: -41% to 152%). Subjects received 1 inhalation once daily of the following: BREO ELLIPTA 100 mcg/25 mcg, fluticasone furoate/vilanterol 50 mcg/25 mcg, fluticasone furoate/vilanterol 200 mcg/25 mcg, fluticasone furoate 100 mcg, fluticasone furoate 200 mcg, vilanterol 25 mcg, or placebo. Table 1: Adverse Reactions With ≥ 3% Incidence and More Common Than Placebo With BREO ELLIPTA in Subjects With Chronic Obstructive Pu monary Disease
Adverse Event BREO ELLIPTA 100 mcg/25 mcg
(n = 410) % Vilanterol 25 mcg
(n = 408) % Fluticasone Furoate 100 mcg
(n = 410) % Placebo
(n = 412) % Infections and infestations   Nasopharyngitis 9 10 8 8   Upper respiratory tract infection 7 5 4 3   Oropharyngeal candidiasisa 5 2 3 2 Nervous system disorders   Headache 7 9 7 5 a Includes terms oral candidiasis, oropharyngeal candidiasis, candidiasis, and oropharyngitis fungal. 12-Month Trials Long-term safety data is based on two 12-month trials (Trials 3 and 4; n = 1,633 and n = 1,622, respectively). Trials 3 and 4 included 3,255 subjects, of which 57% were male and 85% were Caucasian. They had a mean age of 64 years and an average smoking history of 46 pack years, with 44% identified as current smokers. At screening, the mean postbronchodilator percent predicted FEV1 was 45% (range: 12% to 91%), and the mean postbronchodilator FEV1/FVC ratio was 46% (range: 17% to 81%), indicating that the subject population had moderate to very severely impaired airflow obstruction. Subjects received 1 inhalation once daily of the following: BREO ELLIPTA 100 mcg/25 mcg, fluticasone furoate/vilanterol 50 mcg/25 mcg, fluticasone furoate/vilanterol 200 mcg/25 mcg, or vilanterol 25 mcg. In addition to the events shown in Table 1, adverse reactions occurring in greater than or equal to 3% of the subjects treated with BREO ELLIPTA (N = 806) for 12 months included COPD, back pain, pneumonia [see WARNINGS AND PRECAUTIONS], bronchitis, sinusitis, cough, oropharyngeal pain, arthralgia, hypertension, influenza, pharyngitis, diarrhea, peripheral edema, and pyrexia. Postmarketing Experience In addition to adverse reactions reported from clinical trials, the following adverse reactions have been identified during postapproval use of BREO ELLIPTA. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These events have been chosen for inclusion due to either their seriousness, frequency of reporting, or causal connection to BREO ELLIPTA or a combination of these factors. Immune System Disorders Hypersensitivity reactions including anaphylaxis, angioedema, rash, and urticaria. Read the Breo Ellipta (fluticasone furoate and vilanterol inhalation powder) Side Effects Center for a complete guide to possible side effectsLearn More »

Source: http://www.rxlist.com

BREO ELLIPTA 100 mcg/25 mcg should be administered as 1 inhalation once daily by the orally inhaled route only. After inhalation, the patient should rinse his/her mouth with water without swallowing to help reduce the risk of oropharyngeal candidiasis. BREO ELLIPTA should be taken at the same time every day. Do not use BREO ELLIPTA more than 1 time every 24 hours. No dosage adjustment is required for geriatric patients, patients with hepatic impairment, or renally impaired patients [see CLINICAL PHARMACOLOGY].

Source: http://www.rxlist.com

Inhibitors of Cytochrome P450 3A4 Fluticasone furoate and vilanterol, the individual components of BREO ELLIPTA, are both substrates of CYP3A4. Concomitant administration of the potent CYP3A4 inhibitor ketoconazole increases the systemic exposure to fluticasone furoate and vilanterol. Caution should be exercised when considering the coadministration of BREO ELLIPTA with long-term ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, itraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin, troleandomycin, voriconazole) [see WARNINGS AND PRECAUTIONS and CLINICAL PHARMACOLOGY]. Monoamine Oxidase Inhibitors And Tricyclic Antidepressants Vilanterol, like other beta2-agonists, should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors, tricyclic antidepressants, or drugs known to prolong the QTc interval or within 2 weeks of discontinuation of such agents, because the effect of adrenergic agonists on the cardiovascular system may be potentiated by these agents. Drugs that are known to prolong the QTc interval have an increased risk of ventricular arrhythmias. Beta-Adrenergic Receptor Blocking Agents Beta-blockers not only block the pulmonary effect of beta-agonists, such as vilanterol, a component of BREO ELLIPTA, but may produce severe bronchospasm in patients with reversible obstructive airways disease. Therefore, patients with COPD should not normally be treated with beta-blockers. However, under certain circumstances, there may be no acceptable alternatives to the use of beta-adrenergic blocking agents for these patients; cardioselective betablockers could be considered, although they should be administered with caution. Non-Potassium-Sparing Diuretics The electrocardiographic changes and/or hypokalemia that may result from the administration of non-potassium-sparing diuretics (such as loop or thiazide diuretics) can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is not known, caution is advised in the coadministration of beta-agonists with non-potassium-sparing diuretics. Last reviewed on RxList: 3/20/2015
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

BREO ELLIPTA is a combination inhaled corticosteroid/long-acting beta2-adrenergic agonist (ICS/LABA) indicated for the long-term, once-daily, maintenance treatment of airflow obstruction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema. BREO ELLIPTA is also indicated to reduce exacerbations of COPD in patients with a history of exacerbations. Important Limitations of Use BREO ELLIPTA is NOT indicated for the relief of acute bronchospasm or for the treatment of asthma.

Source: http://www.rxlist.com

The use of BREO ELLIPTA is contraindicated in patients with severe hypersensitivity to milk proteins or who have demonstrated hypersensitivity to either fluticasone furoate, vilanterol, or any of the excipients [see WARNINGS AND PRECAUTIONS, DESCRIPTION]. Last reviewed on RxList: 3/20/2015
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

No human overdosage data has been reported for BREO ELLIPTA. BREO ELLIPTA contains both fluticasone furoate and vilanterol; therefore, the risks associated with overdosage for the individual components described below apply to BREO ELLIPTA. Fluticasone Furoate Because of low systemic bioavailability (15.2%) and an absence of acute drug-related systemic findings in clinical trials, overdosage of fluticasone furoate is unlikely to require any treatment other than observation. If used at excessive doses for prolonged periods, systemic effects such as hypercorticism may occur [see WARNINGS AND PRECAUTIONS]. Single- and repeat-dose trials of fluticasone furoate at doses of 50 to 4,000 mcg have been studied in human subjects. Decreases in mean serum cortisol were observed at dosages of 500 mcg or higher given once daily for 14 days. Vilanterol The expected signs and symptoms with overdosage of vilanterol are those of excessive beta-adrenergic stimulation and/or occurrence or exaggeration of any of the signs and symptoms of beta-adrenergic stimulation (e.g., angina, hypertension or hypotension, tachycardia with rates up to 200 beats/min, arrhythmias, nervousness, headache, tremor, seizures, muscle cramps, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, insomnia, hyperglycemia, hypokalemia, metabolic acidosis). As with all inhaled sympathomimetic medicines, cardiac arrest and even death may be associated with an overdose of vilanterol. Treatment of overdosage consists of discontinuation of BREO ELLIPTA together with institution of appropriate symptomatic and/or supportive therapy. The judicious use of a cardioselective beta-receptor blocker may be considered, bearing in mind that such medicine can produce bronchospasm. Cardiac monitoring is recommended in cases of overdosage.

Source: http://www.rxlist.com

Dosage Forms And Strengths Inhalation Powder. Disposable light grey and pale blue plastic inhaler containing 2 double-foil blister strips, each with 30 blisters containing powder intended for oral inhalation only. One strip contains fluticasone furoate (100 mcg per blister), and the other strip contains vilanterol (25 mcg per blister). An institutional pack containing 14 blisters per strip is also available. Storage And Handling BREO ELLIPTA is supplied as a disposable light grey and pale blue plastic inhaler containing 2 double-foil strips, each with 30 blisters. The inhaler is packaged within a moistureprotective foil tray with a desiccant and a peelable lid (NDC 0173-0859-10). BREO ELLIPTA is also supplied in an institutional pack as a disposable light grey and pale blue plastic inhaler containing 2 double-foil strips, each with 14 blisters. It is packaged within a moisture-protective foil tray with a desiccant and a peelable lid (NDC 0173-0859-14). Store at room temperature between 68°F and 77°F (20°C and 25°C); excursions permitted from 59° to 86°F (15° to 30°C) [See USP Controlled Room Temperature]. Store in a dry place away from direct heat or sunlight. Keep out of reach of children. BREO ELLIPTA should be stored inside the unopened moisture-protective foil tray and only removed from the tray immediately before initial use. Discard BREO ELLIPTA 6 weeks after opening the foil tray or when the counter reads “0” (after all blisters have been used), whichever comes first. The inhaler is not reusable. Do not attempt to take the inhaler apart. BREO ELLIPTA was developed in collaboration with Theravance. GlaxoSmithKline, Research Triangle Park, NC 27709. Revised: March 2015 Last reviewed on RxList: 3/20/2015
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

Asthma-Related Death
  • Data from a large placebo-controlled trial in subjects with asthma showed that LABA may increase the risk of asthma-related death. Data are not available to determine whether the rate of death in patients with COPD is increased by LABA.
  • A 28-week, placebo-controlled, US trial comparing the safety of another LABA (salmeterol) with placebo, each added to usual asthma therapy, showed an increase in asthma-related deaths in subjects receiving salmeterol (13/13,176 in subjects treated with salmeterol vs 3/13,179 in subjects treated with placebo; relative risk: 4.37 [95% CI: 1.25, 15.34]). The increased risk of asthma-related death is considered a class effect of LABA, including vilanterol, one of the active ingredients in BREO ELLIPTA.
  • No study adequate to determine whether the rate of asthma-related death is increased in subjects treated with BREO ELLIPTA has been conducted. The safety and efficacy of BREO ELLIPTA in patients with asthma have not been established. BREO ELLIPTA is not indicated for the treatment of asthma.
Deterioration Of Disease And Acute Episodes BREO ELLIPTA should not be initiated in patients during rapidly deteriorating or potentially life-threatening episodes of COPD. BREO ELLIPTA has not been studied in patients with acutely deteriorating COPD. The initiation of BREO ELLIPTA in this setting is not appropriate. BREO ELLIPTA should not be used for the relief of acute symptoms, i.e., as rescue therapy for the treatment of acute episodes of bronchospasm. BREO ELLIPTA has not been studied in the relief of acute symptoms and extra doses should not be used for that purpose. Acute symptoms should be treated with an inhaled, short-acting beta2-agonist. When beginning treatment with BREO ELLIPTA, patients who have been taking oral or inhaled, short-acting beta2-agonists on a regular basis (e.g., 4 times a day) should be instructed to discontinue the regular use of these drugs and to use them only for symptomatic relief of acute respiratory symptoms. When prescribing BREO ELLIPTA, the healthcare provider should also prescribe an inhaled, short-acting beta2-agonist and instruct the patient on how it should be used. Increasing inhaled, short-acting beta2-agonist use is a signal of deteriorating disease for which prompt medical attention is indicated. COPD may deteriorate acutely over a period of hours or chronically over several days or longer. If BREO ELLIPTA no longer controls symptoms of bronchoconstriction; the patient's inhaled, short-acting, beta2-agonist becomes less effective; or the patient needs more short-acting beta2-agonist than usual, these may be markers of deterioration of disease. In this setting a re-evaluation of the patient and the COPD treatment regimen should be undertaken at once. Increasing the daily dose of BREO ELLIPTA beyond the recommended dose is not appropriate in this situation. Excessive Use Of BREO ELLIPTA And Use With Other Long-Acting Beta2-Agonists BREO ELLIPTA should not be used more often than recommended, at higher doses than recommended, or in conjunction with other medicines containing LABA, as an overdose may result. Clinically significant cardiovascular effects and fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs. Patients using BREO ELLIPTA should not use another medicine containing a LABA (e.g., salmeterol, formoterol fumarate, arformoterol tartrate, indacaterol) for any reason. Local Effects Of Inhaled Corticosteroids In clinical trials, the development of localized infections of the mouth and pharynx with Candida albicans has occurred in subjects treated with BREO ELLIPTA. When such an infection develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while treatment with BREO ELLIPTA continues, but at times therapy with BREO ELLIPTA may need to be interrupted. Advise the patient to rinse his/her mouth without swallowing following inhalation to help reduce the risk of oropharyngeal candidiasis. Pneumonia An increase in the incidence of pneumonia has been observed in subjects with COPD receiving the fluticasone furoate/vilanterol combination, including BREO ELLIPTA 100 mcg/25 mcg, in clinical trials. There was also an increased incidence of pneumonias resulting in hospitalization. In some incidences these pneumonia events were fatal. Physicians should remain vigilant for the possible development of pneumonia in patients with COPD as the clinical features of such infections overlap with the symptoms of COPD exacerbations. In replicate 12-month trials in 3,255 subjects with COPD who had experienced a COPD exacerbation in the previous year, there was a higher incidence of pneumonia reported in subjects receiving the fluticasone furoate/vilanterol combination (50 mcg/25 mcg: 6% [48 of 820 subjects]; 100 mcg/25 mcg: 6% [51 of 806 subjects]; or 200 mcg/25 mcg: 7% [55 of 811 subjects]) than in subjects receiving vilanterol 25 mcg (3% [27 of 818 subjects]). There was no fatal pneumonia in subjects receiving vilanterol or fluticasone furoate/vilanterol 50 mcg/25 mcg. There was fatal pneumonia in 1 subject receiving fluticasone furoate/vilanterol 100 mcg/25 mcg and in 7 subjects receiving fluticasone furoate/vilanterol 200 mcg/25 mcg (less than 1% for each treatment group). Immunosuppression Persons who are using drugs that suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in susceptible children or adults using corticosteroids. In such children or adults who have not had these diseases or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If a patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chickenpox develops, treatment with antiviral agents may be considered. Inhaled corticosteroids should be used with caution, if at all, in patients with active or quiescent tuberculosis infections of the respiratory tract; systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex. Transferring Patients From Systemic Corticosteroid Therapy Particular care is needed for patients who have been transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in patients with asthma during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function. Patients who have been previously maintained on 20 mg or more of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn. During this period of HPA suppression, patients may exhibit signs and symptoms of adrenal insufficiency when exposed to trauma, surgery, or infection (particularly gastroenteritis) or other conditions associated with severe electrolyte loss. Although BREO ELLIPTA may control COPD symptoms during these episodes, in recommended doses it supplies less than normal physiological amount of glucocorticoid systemically and does NOT provide the mineralocorticoid activity that is necessary for coping with these emergencies. During periods of stress or a severe COPD exacerbation, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids (in large doses) immediately and to contact their physicians for further instruction. These patients should also be instructed to carry a warning card indicating that they may need supplementary systemic corticosteroids during periods of stress or severe COPD exacerbation. Patients requiring oral corticosteroids should be weaned slowly from systemic corticosteroid use after transferring to BREO ELLIPTA. Prednisone reduction can be accomplished by reducing the daily prednisone dose by 2.5 mg on a weekly basis during therapy with BREO ELLIPTA. Lung function (mean forced expiratory volume in 1 second [FEV1]), beta-agonist use, and COPD symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition, patients should be observed for signs and symptoms of adrenal insufficiency, such as fatigue, lassitude, weakness, nausea and vomiting, and hypotension. Transfer of patients from systemic corticosteroid therapy to BREO ELLIPTA may unmask allergic conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, arthritis, eosinophilic conditions). During withdrawal from oral corticosteroids, some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function. Hypercorticism And Adrenal Suppression Inhaled fluticasone furoate is absorbed into the circulation and can be systemically active. Effects of fluticasone furoate on the HPA axis are not observed with the therapeutic dose of BREO ELLIPTA. However, exceeding the recommended dosage or coadministration with a strong cytochrome P450 3A4 (CYP3A4) inhibitor may result in HPA dysfunction [see Drug Interactions With Strong Cytochrome P450 3A4 Inhibitors below, DRUG INTERACTIONS]. Because of the possibility of significant systemic absorption of inhaled corticosteroids in sensitive patients, patients treated with BREO ELLIPTA should be observed carefully for any evidence of systemic corticosteroid effects. Particular care should be taken in observing patients postoperatively or during periods of stress for evidence of inadequate adrenal response. It is possible that systemic corticosteroid effects such as hypercorticism and adrenal suppression (including adrenal crisis) may appear in a small number of patients who are sensitive to these effects. If such effects occur, BREO ELLIPTA should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids, and other treatments for management of COPD symptoms should be considered. Drug Interactions With Strong Cytochrome P450 3A4 Inhibitors Caution should be exercised when considering the coadministration of BREO ELLIPTA with long-term ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, itraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin, troleandomycin, voriconazole) because increased systemic corticosteroid and increased cardiovascular adverse effects may occur [see DRUG INTERACTIONS, CLINICAL PHARMACOLOGY]. Paradoxical Bronchospasm As with other inhaled medicines, BREO ELLIPTA can produce paradoxical bronchospasm, which may be life threatening. If paradoxical bronchospasm occurs following dosing with BREO ELLIPTA, it should be treated immediately with an inhaled, short-acting bronchodilator; BREO ELLIPTA should be discontinued immediately; and alternative therapy should be instituted. Hypersensitivity Reactions, Including Anaphylaxis Hypersensitivity reactions such as anaphylaxis, angioedema, rash, and urticaria may occur after administration of BREO ELLIPTA. Discontinue BREO ELLIPTA if such reactions occur. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of other powder medications containing lactose; therefore, patients with severe milk protein allergy should not use BREO ELLIPTA [see CONTRAINDICATIONS]. Cardiovascular Effects Vilanterol, like other beta2-agonists, can produce a clinically significant cardiovascular effect in some patients as measured by increases in pulse rate, systolic or diastolic blood pressure, and also cardiac arrhythmias, such as supraventricular tachycardia and extrasystoles. If such effects occur, BREO ELLIPTA may need to be discontinued. In addition, beta-agonists have been reported to produce electrocardiographic changes, such as flattening of the T wave, prolongation of the QTc interval, and ST segment depression, although the clinical significance of these findings is unknown. In healthy subjects, large doses of inhaled fluticasone furoate/vilanterol (4 times the recommended dose of vilanterol, representing a 12-fold higher systemic exposure than seen in patients with COPD) have been associated with clinically significant prolongation of the QTc interval, which has the potential for producing ventricular arrhythmias. Therefore, BREO ELLIPTA, like other sympathomimetic amines, should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension. Reduction In Bone Mineral Density Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. The clinical significance of small changes in BMD with regard to long-term consequences such as fracture is unknown. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids) should be monitored and treated with established standards of care. Since patients with COPD often have multiple risk factors for reduced BMD, assessment of BMD is recommended prior to initiating BREO ELLIPTA and periodically thereafter. If significant reductions in BMD are seen and BREO ELLIPTA is still considered medically important for that patient's COPD therapy, use of medicine to treat or prevent osteoporosis should be strongly considered. In replicate 12-month trials in 3,255 subjects with COPD, bone fractures were reported by 2% of subjects receiving the fluticasone furoate/vilanterol combination (50 mcg/25 mcg: 2% [14 of 820 subjects]; 100 mcg/25 mcg: 2% [19 of 806 subjects]; or 200 mcg/25 mcg: 2% [14 of 811 subjects]) than in subjects receiving vilanterol 25 mcg alone (less than 1% [8 of 818 subjects]). Glaucoma And Cataracts Glaucoma, increased intraocular pressure, and cataracts have been reported in patients with COPD following the long-term administration of inhaled corticosteroids. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts. In replicate 12-month trials in 3,255 subjects with COPD, similar incidences of ocular effects (including glaucoma and cataracts) were reported in subjects receiving the fluticasone furoate/vilanterol combination (50 mcg/25 mcg: less than 1% [7 of 820 subjects]; 100 mcg/25 mcg: 1% [12 of 806 subjects]; 200 mcg/25 mcg: less than 1% [7 of 811 subjects]) as those receiving vilanterol 25 mcg alone (1% [9 of 818 subjects]). Coexisting Conditions BREO ELLIPTA, like all medicines containing sympathomimetic amines, should be used with caution in patients with convulsive disorders or thyrotoxicosis and in those who are unusually responsive to sympathomimetic amines. Doses of the related beta2-adrenoceptor agonist albuterol, when administered intravenously, have been reported to aggravate preexisting diabetes mellitus and ketoacidosis. Hypokalemia And Hyperglycemia Beta-adrenergic agonist medicines may produce significant hypokalemia in some patients, possibly through intracellular shunting, which has the potential to produce adverse cardiovascular effects. The decrease in serum potassium is usually transient, not requiring supplementation. Beta-agonist medications may produce transient hyperglycemia in some patients. In 4 clinical trials of 6- and 12-month duration evaluating BREO ELLIPTA in subjects with COPD, there was no evidence of a treatment effect on serum glucose or potassium. Patient Counseling Information Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use). Asthma-Related Death Patients should be informed that LABA, such as vilanterol, one of the active ingredients in BREO ELLIPTA, increase the risk of asthma-related death. BREO ELLIPTA is not indicated for the treatment of asthma. Not for Acute Symptoms BREO ELLIPTA is not meant to relieve acute symptoms of COPD and extra doses should not be used for that purpose. Acute symptoms should be treated with a rescue inhaler such as albuterol. The physician should provide the patient with such medicine and instruct the patient in how it should be used. Patients should be instructed to notify their physicians immediately if they experience any of the following:
  • Symptoms get worse
  • Need for more inhalations than usual of their rescue inhaler
  • Significant decrease in lung function as outlined by the physician
Patients should not stop therapy with BREO ELLIPTA without physician/provider guidance since symptoms may recur after discontinuation. Do Not Use Additional Long-Acting Beta2-Agonists When patients are prescribed BREO ELLIPTA, other medicines containing a LABA should not be used. Risks Associated With Corticosteroid Therapy Local Effects Patients should be advised that localized infections with Candida albicans occurred in the mouth and pharynx in some patients. If oropharyngeal candidiasis develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while still continuing therapy with BREO ELLIPTA, but at times therapy with BREO ELLIPTA may need to be temporarily interrupted under close medical supervision. Rinsing the mouth without swallowing after inhalation is advised to help reduce the risk of thrush. Pneumonia Patients with COPD who have received BREO ELLIPTA have a higher risk of pneumonia and should be instructed to contact their healthcare providers if they develop symptoms of pneumonia (e.g., fever, chills, change in sputum color, increase in breathing problems). Immunosuppression Patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles and, if exposed, to consult their physicians without delay. Patients should be informed of potential worsening of existing tuberculosis, fungal, bacterial, viral, or parasitic infections, or ocular herpes simplex. Hypercorticism and Adrenal Suppression Patients should be advised that BREO ELLIPTA may cause systemic corticosteroid effects of hypercorticism and adrenal suppression. Additionally, patients should be instructed that deaths due to adrenal insufficiency have occurred during and after transfer from systemic corticosteroids. Reduction in Bone Mineral Density Patients who are at an increased risk for decreased BMD should be advised that the use of corticosteroids may pose an additional risk. Ocular Effects Long-term use of inhaled corticosteroids may increase the risk of some eye problems (cataracts or glaucoma); regular eye examinations should be considered. Risks Associated With Beta-Agonist Therapy Patients should be informed of adverse effects associated with beta2-agonists, such as palpitations, chest pain, rapid heart rate, tremor, or nervousness. Hypersensitivity Reactions, Including Anaphylaxis Advise patients that hypersensitivity reactions (e.g., anaphylaxis, angioedema, rash, urticaria) may occur after administration of BREO ELLIPTA. Instruct patients to discontinue BREO ELLIPTA if such reactions occur. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of other powder medications containing lactose; therefore, patients with severe milk protein allergy should not use BREO ELLIPTA. Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of Fertility BREO ELLIPTA No studies of carcinogenicity, mutagenicity, or impairment of fertility were conducted with BREO ELLIPTA; however, studies are available for the individual components, fluticasone furoate and vilanterol, as described below. Fluticasone Furoate Fluticasone furoate produced no treatment-related increases in the incidence of tumors in 2-year inhalation studies in rats and mice at inhaled doses up to 9 and 19 mcg/kg/day, respectively (approximately equal to the MRHDID in adults on a mcg/m basis). Fluticasone furoate did not induce gene mutation in bacteria or chromosomal damage in a mammalian cell mutation test in mouse lymphoma L5178Y cells in vitro. There was also no evidence of genotoxicity in the in vivo micronucleus test in rats. No evidence of impairment of fertility was observed in male and female rats at inhaled fluticasone furoate doses up to 29 and 91 mcg/kg/day, respectively (approximately 3 and 9 times, respectively, the MRHDID in adults on a mcg/m basis). Vilanterol In a 2-year carcinogenicity study in mice, vilanterol caused a statistically significant increase in ovarian tubulostromal adenomas in females at an inhalation dose of 29,500 mcg/kg/day (approximately 8,750 times the MRHDID in adults on an AUC basis). No increase in tumors was seen at an inhalation dose of 615 mcg/kg/day (approximately 530 times the MRHDID in adults on an AUC basis). In a 2-year carcinogenicity study in rats, vilanterol caused statistically significant increases in mesovarian leiomyomas in females and shortening of the latency of pituitary tumors at inhalation doses greater than or equal to 84.4 mcg/kg/day (greater than or equal to approximately 45 times the MRHDID in adults on an AUC basis). No tumors were seen at an inhalation dose of 10.5 mcg/kg/day (approximately 2 times the MRHDID in adults on an AUC basis). These tumor findings in rodents are similar to those reported previously for other betaadrenergic agonist drugs. The relevance of these findings to human use is unknown. Vilanterol tested negative in the following genotoxicity assays: the in vitro Ames assay, in vivo rat bone marrow micronucleus assay, in vivo rat unscheduled DNA synthesis (UDS) assay, and in vitro Syrian hamster embryo (SHE) cell assay. Vilanterol tested equivocal in the in vitro mouse lymphoma assay. No evidence of impairment of fertility was observed in reproductive studies conducted in male and female rats at inhaled vilanterol doses up to 31,500 and 37,100 mcg/kg/day, respectively (approximately 12,000 and 14,000 times, respectively, the MRHDID in adults on a mcg/m basis). Use In Specific Populations Pregnancy Teratogenic Effects Pregnancy Category C. There are no adequate and well-controlled trials with BREO ELLIPTA in pregnant women. Corticosteroids and beta2-agonists have been shown to be teratogenic in laboratory animals when administered systemically at relatively low dosage levels. Because animal studies are not always predictive of human response, BREO ELLIPTA should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Women should be advised to contact their physicians if they become pregnant while taking BREO ELLIPTA. Fluticasone Furoate and Vilanterol: There was no evidence of teratogenic interactions between fluticasone furoate and vilanterol in rats at approximately 9 and 40 times, respectively, the maximum recommended human daily inhalation dose (MRHDID) in adults (on a mcg/m basis at maternal inhaled doses of fluticasone furoate and vilanterol, alone or in combination, up to approximately 95 mcg/kg/day). Fluticasone Furoate: There were no teratogenic effects in rats and rabbits at approximately 9 and 2 times, respectively, the MRHDID in adults (on a mcg/m basis at maternal inhaled doses up to 91 and 8 mcg/kg/day in rats and rabbits, respectively). There were no effects on perinatal and postnatal development in rats at approximately 3 times the MRHDID in adults (on a mcg/m basis at maternal doses up to 27 mcg/kg/day). Vilanterol: There were no teratogenic effects in rats and rabbits at approximately 13,000 and 160 times, respectively, the MRHDID in adults (on a mcg/m basis at maternal inhaled doses up to 33,700 mcg/kg/day in rats and on an AUC basis at maternal inhaled doses up to 591 mcg/kg/day in rabbits). However, fetal skeletal variations were observed in rabbits at approximately 1,000 times the MRHDID in adults (on an AUC basis at maternal inhaled or subcutaneous doses of 5,740 or 300 mcg/kg/day, respectively). The skeletal variations included decreased or absent ossification in cervical vertebral centrum and metacarpals. There were no effects on perinatal and postnatal development in rats at approximately 3,900 times the MRHDID in adults (on a mcg/m basis at maternal oral doses up to 10,000 mcg/kg/day). Nonteratogenic Effects Hypoadrenalism may occur in infants born of mothers receiving corticosteroids during pregnancy. Such infants should be carefully monitored. Labor And Delivery There are no adequate and well-controlled human trials that have investigated the effects of BREO ELLIPTA during labor and delivery. Because beta-agonists may potentially interfere with uterine contractility, BREO ELLIPTA should be used during labor only if the potential benefit justifies the potential risk. Nursing Mothers It is not known whether fluticasone furoate or vilanterol are excreted in human breast milk. However, other corticosteroids and beta2-agonists have been detected in human milk. Since there are no data from controlled trials on the use of BREO ELLIPTA by nursing mothers, caution should be exercised when it is administered to a nursing woman. Pediatric Use BREO ELLIPTA is not indicated for use in children. The safety and efficacy in pediatric patients have not been established. Geriatric Use Based on available data, no adjustment of the dosage of BREO ELLIPTA in geriatric patients is necessary, but greater sensitivity in some older individuals cannot be ruled out. Clinical trials of BREO ELLIPTA for COPD included 2,508 subjects aged 65 and older and 564 subjects aged 75 and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger subjects. Hepatic Impairment Fluticasone furoate systemic exposure increased by up to 3-fold in subjects with hepatic impairment compared with healthy subjects. Hepatic impairment had no effect on vilanterol systemic exposure. Use BREO ELLIPTA with caution in patients with moderate or severe hepatic impairment. Monitor patients for corticosteroid-related side effects [see CLINICAL PHARMACOLOGY]. Renal Impairment There were no significant increases in either fluticasone furoate or vilanterol exposure in subjects with severe renal impairment (CrCl < 30 mL/min) compared with healthy subjects. No dosage adjustment is required in patients with renal impairment [see CLINICAL PHARMACOLOGY]. Last reviewed on RxList: 3/20/2015
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

Health Services in

Drug Database Online

Welcome to Senior Healthcare Matters an online drug guide and dictionary, here you can get drug information and definitaions for most popular pharmaceutical and medicinal drugs, and specifically Breo Ellipta. Find what medications you are taking today.