Drug: Cytogam

Cytogam® , Cytomegalovirus Immune Globulin Intravenous (Human) (CMV-IGIV), is an immunoglobulin G (IgG) containing a standardized amount of antibody to Cytomegalovirus (CMV). CMV-IGIV is formulated in final vial as a sterile liquid. The globulin is stabilized with 5% sucrose and 1% Albumin (Human). Cytogam® contains no preservative. The purified immunoglobulin is derived from pooled adult human plasma selected for high titers of antibody for Cytomegalovirus (CMV) (1). Source material for fractionation may be obtained from another U.S. licensed manufacturer. Pooled plasma was fractionated by ethanol precipitation of the proteins according to Cohn Methods 6 and 9, modified to yield a product suitable for intravenous administration. A widely utilized solvent-detergent viral inactivation process is also used (2). Certain manufacturing operations may be performed by other firms. Each milliliter contains: 50 ± 10 mg of immunoglobulin, primarily IgG, and trace amounts of IgA and IgM; 50 mg of sucrose; 10 mg of Albumin (Human). The sodium content is 20-30 mEq per liter, i.e., 0.4-0.6 mEq per 20 mL or 1.0-1.5 mEq per 50 mL The solution should appear colorless and translucent. REFERENCES 1. Snydman DR, McIver J, Leszczynski J, et al. A pilot trial of a novel cytomegalovirus immune globulin in renal transplant recipients. Transplantation 1984;38:553-557. 2. Horowitz B, Wiebe ME, Lippin A, et al. Inactivation of viruses in labile blood derivatives. Transfusion 1985;25:516-522.

Source: http://www.rxlist.com

Minor reactions such as flushing, chills, muscle cramps, back pain, fever, nausea, vomiting, arthralgia, and wheezing were the most frequent adverse reactions observed during the clinical trials of Cytogam® (cytomegalovirus immune globulin intravenous human) , Cytomegalovirus Immune Globulin Intravenous (Human). The incidence of these reactions during the clinical trials was less than 6.0% of all infusions and such reactions were most often related to infusion rates. A decrease in blood pressure was observed in 1 of 1039 infusions in clinical trials of Cytogam® (cytomegalovirus immune globulin intravenous human) . If a patient develops a minor side effect, slow the rate immediately or temporarily interrupt the infusion. Increases in serum creatinine and blood urea nitrogen (BUN) have been observed as soon as one to two days following IGIV infusion. Progression to oliguria or anuria requiring dialysis has been observed. Types of severe renal adverse events that have been seen following IGIV therapy include acute renal failure, acute tubular necrosis, proximal tubular nephropathy and osmotic nephrosis (18-25). Severe reactions such as angioneurotic edema and anaphylactic shock, although not observed during clinical trials, are a possibility. Clinical anaphylaxis may occur even when the patient is not known to be sensitized to immune globulin products. A reaction may be related to the rate of infusion; therefore, carefully adhere to the infusion rates as outlined under "DOSAGE AND ADMINISTRATION." If anaphylaxis or drop in blood pressure occurs, discontinue infusion and use antidote such as diphenhydramine and adrenalin. Postmarketing: The following adverse reactions have been identified and reported during the post-approval use of IGIV products (38): Respiratory. Apnea, Acute Respiratory Distress Syndrome (ARDS), Transfusion Associated Lung Injury (TRALI), cyanosis, hypoxemia, pulmonary edema, dyspnea, bronchospasm Cardiovascular: Cardiac arrest, thromboembolism, vascular collapse, hypotension Neurological: Coma, loss of consciousness, seizures, tremor Integumentary: Stevens-Johnson syndrome, epidermolysis, erythema multiforme, bullous dermatitis Hematologic: Pancytopenia, leukopenia, hemolysis, positive direct antiglobulin (Coombs) test General/Body as a Whole: Pyrexia, Rigors Musculoskeletal: Back pain Gastrointestinal:Hepatic dysfunction, abdominal pain Because postmarketing reporting of these reactions is voluntary and the at-risk populations are of uncertain size, it is not always possible to reliably estimate the frequency of the reaction or establish a causal relationship to exposure to the product. Such is also the case with literature reports authored independently. Read the Cytogam (cytomegalovirus immune globulin intravenous human) Side Effects Center for a complete guide to possible side effectsLearn More »

Source: http://www.rxlist.com

The maximum recommended total dosage per infusion is 150 mg Ig/kg, administered according to the following schedule: Type of Transplant
  Kidney Liver, Pancreas, Lung, Heart Within 72 hours of transplant: 150 mg/kg 150 mg/kg 2 weeks post transplant: 100 mg/kg 150 mg/kg 4 weeks post transplant: 100 mg/kg 150 mg/kg 6 weeks post transplant: 100 mg/kg 150 mg/kg 8 weeks post transplant: 100 mg/kg 150 mg/kg 12 weeks post transplant: 50 mg/kg 100 mg/kg 16 weeks post transplant: 50 mg/kg 100 mg/kg Preparation for Administration Remove the tab portion of the vial cap and clean the rubber stopper with 70% alcohol or equivalent. DO NOT SHAKE VIAL; AVOID FOAMING. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Infuse the solution only if it is colorless, free of particulate matter and not turbid. Infusion Infusion should begin within 6 hours after entering the vial and should be complete within 12 hours of entering the vial. Vital signs should be taken preinfusion, mid-way and post-infusion as well as before any rate increase. Cytogam® (cytomegalovirus immune globulin intravenous human) should be administered through an intravenous line using an administration set that contains an in-line filter (pore size 15µ) and a constant infusion pump (i.e., IVAC pump or equivalent). A smaller in-line filter (0.2µ) is also acceptable. Pre-dilution of Cytogam® (cytomegalovirus immune globulin intravenous human) before infusion is not recommended. Cytogam® (cytomegalovirus immune globulin intravenous human) should be administered through a separate intravenous line. If this is not possible, Cytogam® (cytomegalovirus immune globulin intravenous human) may be "piggybacked" into a pre-existing line if that line contains either Sodium Chloride Injection, USP, or one of the following dextrose solutions (with or without NaCl added): 2.5% dextrose in water, 5% dextrose in water, 10% dextrose in water, 20% dextrose in water. If a pre-existing line must be used, the Cytogam® (cytomegalovirus immune globulin intravenous human) should not be diluted more than 1:2 with any of the above-named solutions. Admixtures of Cytogam® (cytomegalovirus immune globulin intravenous human) with any other solutions have not been evaluated. Initial Dose Administer intravenously at 15 mg Ig per kg body weight per hour. If no adverse reactions occur after 30 minutes, the rate may be increased to 30 mg Ig/kg/hr; if no adverse reactions occur after a subsequent 30 minutes, then the infusion may be increased to 60 mg Ig/kg/hr (volume not to exceed 75 mL/hour). DO NOT EXCEED THIS RATE OF ADMINISTRATION. The patient should be monitored closely during and after each rate change. Subsequent Doses Administer at 15 mg Ig/kg/hr for 15 minutes. If no adverse reactions occur, increase to 30 mg Ig/kg/hr for 15 minutes and then increase to a maximum rate of 60 mg Ig/kg/hr (volume not to exceed 75 mL/hour). DO NOT EXCEED THIS RATE OF ADMINISTRATION. The patient should be monitored closely during each rate change. Cytogam® (cytomegalovirus immune globulin intravenous human) should be used with caution in patients with pre-existing renal insufficiency and in patients judged to be at increased risk of developing renal insufficiency (including, but not limited to those with diabetes mellitus, age greater than 65, volume depletion, paraproteinemia, sepsis and patients receiving known nephrotoxic drugs). In these cases especially, it is important to assure that patients are not volume depleted prior to Cytogam® (cytomegalovirus immune globulin intravenous human) infusion. While most cases of renal insufficiency have occurred in patients receiving total doses of 350 mg Ig/kg or greater, no prospective data are presently available to identify a maximum safe dose, concentration or rate of infusion in patients determined to be at increased risk of acute renal failure. In the absence of prospective data, recommended doses should not be exceeded and the concentration and infusion rate selected should be the minimum practicable. Potential adverse reactions are: flushing, chills, muscle cramps, back pain, fever, nausea, vomiting, wheezing, drop in blood pressure. Minor adverse reactions have been infusion rate related - if the patient develops a minor side effect (i.e., nausea, back pain, flushing), slow the rate or temporarily interrupt the infusion. If anaphylaxis or drop in blood pressure occurs, discontinue infusion and use antidote such as diphenhydramine and adrenalin. To prevent the transmission of hepatitis viruses or other infectious agents from one person to another, sterile disposable syringes and needles should be used. The syringes and needles should not be reused.

Source: http://www.rxlist.com

Antibodies present in immune globulin preparations may interfere with the immune response to live virus vaccines such as measles, mumps, and rubella; therefore, vaccination with live virus vaccines should be deferred until approximately three months after administration of Cytogam® (cytomegalovirus immune globulin intravenous human) . If such vaccinations were given shortly after Cytogam® (cytomegalovirus immune globulin intravenous human) , a revaccination may be necessary. Admixtures of Cytogam® (cytomegalovirus immune globulin intravenous human) with other drugs have not been evaluated. It is recommended that Cytogam® (cytomegalovirus immune globulin intravenous human) be administered separately from other drugs or medications which the patient may be receiving (see DOSAGE AND ADMINISTRATION section). REFERENCES 18. Cayco AV, Perazella MA, Hayslett JP. Renal insufficiency after intravenous immune globulin therapy: A report of two cases and an analysis of the literature. J Am Soc Nephrol 1997;8:1788-1794. 19. Cantu TG, Hoehn-Saric EW, Burgess KM, Racusen L, Scheel PJ. Acute renal failure associated with immunoglobulin therapy. Am J Kidney Dis 1995;25:228-234. 20. Hansen-Schmidt S, Silomon J, Keller F. Osmotic nephrosis due to high-dose intravenous immunoglobulin therapy containing sucrose (but not with glycine) in a patient with immunoglobulin A nephritis. Am J Kidney Dis 1996;28: 451-453. 21. Tan E, Hajinazarian M, Bay W, Neff J, Mendell JR. Acute renal failure resulting from intravenous immunoglobulin therapy. Arch Neurol 1993;50:137-139. 22. Winward D, Brophy MT. Acute renal failure after administration of intravenous immunoglobulin: Review of the literature and case report. Pharmacotherapy 1995;15:765-772. 23 Phillips AO. Renal failure and intravenous immunoglobulin [letter; comment]. Clin Nephrol 1992;37:217. 24. Lindberg HA, Wald MH, Barker MH. Renal changes following administration of hypertonic solutions. Arch Intern Med 1939;63:907-918. 25. Rigdon RH, Cardwell ES. Renal lesions following the intravenous injection of a hypertonic solution of sucrose. Arch Intern Med 1942;69:670-690. 38. Pierce LR, Jain N. Risks associated with the use of intravenous immunoglobulin. Trans Med Rev 2003;17:241-251. Read the Cytogam Drug Interactions Center for a complete guide to possible interactions Learn More »

Source: http://www.rxlist.com

Cytomegalovirus Immune Globulin Intravenous (Human) is indicated for the prophylaxis of cytomegalovirus disease associated with transplantation of kidney, lung, liver, pancreas and heart. In transplants of these organs other than kidney from CMV seropositive donors into seronegative recipients, prophylactic CMV-IGIV should be considered in combination with ganciclovir.

Source: http://www.rxlist.com

Cytogam® (cytomegalovirus immune globulin intravenous human) should not be used in individuals with a history of a prior severe reaction associated with the administration of this or other human immunoglobulin preparations. Persons with selective immunoglobulin A deficiency have the potential for developing antibodies to immunoglobulin A and could have anaphylactic reactions to subsequent administration of blood products that contain immunoglobulin A, including Cytogam® (cytomegalovirus immune globulin intravenous human) . Last reviewed on RxList: 10/30/2008
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

Although few data are available, clinical experience with other immunoglobulin preparations suggests that the major manifestations would be those related to volume overload.

Source: http://www.rxlist.com

Cytogam®, Cytomegalovirus Immune Globulin Intravenous (Human), is supplied in one single-dose vial form: NDC No. Total Quantity of Immunoglobulin Volume Concentration 44206-3101-1 2500 mg ± 500 mg 50mL 50 ± 10 mg/mL Storage Cytogam® (cytomegalovirus immune globulin intravenous human) should be stored between 2-8°C (36-46°F), and used within 6 hours after entering the vial. For additional information concerning Cytomegalovirus Immune Globulin Intravenous (Human) contact: CSL Behring Medical Affairs, CSL Behring LLC, King of Prussia, PA 19406 USA. 1-800-504-5434 Manufactured by: PRECISION PHARMA SERVICES, Melville, NY 11747, USA. and by: BAXTER PHARMACEUTICAL SOLUTIONS, LLC, Bloomington, IN 47403. Manufactured for: CSL Behring AG, Bern, Switzerland. Revised March 2007. FDA rev date: n/a Last reviewed on RxList: 10/30/2008
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

General: Cytogam® (cytomegalovirus immune globulin intravenous human) does not contain a preservative. The vial should be entered only once for administration purposes and the infusion should begin within 6 hours. The infusion schedule should be adhered to closely (see Infusion section). Do not use if the solution is turbid. Although systemic allergic reactions are rare (see ADVERSE REACTIONS section), epinephrine and diphenhydramine should be available for treatment of acute allergic symptoms. If hypotension or anaphylaxis occur, the administration of the immunoglobulin should be discontinued immediately and an antidote should be given as noted above. Renal Function: Assure that patients are not volume depleted prior to the initiation of IGIV. Periodic monitoring of renal function tests and urine output is particularly important in patients judged to have a potential increased risk for developing acute renal failure. Renal function, including the measurement of blood urea nitrogen (BUN) and serum creatinine should be assessed prior to the initial infusion of Cytogam® (cytomegalovirus immune globulin intravenous human) and again at appropriate intervals thereafter. If renal function deteriorates, discontinuation of the product should be considered. The recommended rate of Cytogam® (cytomegalovirus immune globulin intravenous human) infusion for prophylaxis of CMV disease in solid organ transplant patients is 60 mg Ig/kg/hr (see DOSAGE AND ADMINISTRATION). Aseptic Meningitis Syndrome: An aseptic meningitis syndrome (AMS) has been reported to occur infrequently in association with Immune Globulin Intravenous (Human) (IGIV) treatment (26-29). The syndrome usually begins within several hours to two days following IGIV treatment. It is characterized by symptoms and signs including severe headache, nuchal rigidity, drowsiness, fever, photophobia, painful eye movements, and nausea and vomiting. Cerebrospinal fluid (CSF) studies are frequently positive with pleocytosis up to several thousand cells per cu.mm., predominantly from the granulocytic series, and elevated protein levels up to several hundred mg/dl. Patients exhibiting such symptoms and signs should receive a thorough neurological examination, including CSF studies, to rule out other causes of meningitis. AMS may occur more frequently in association with high dose (2 g/kg) IGIV treatment. Discontinuation of IGIV treatment has resulted in remission of AMS within several days without sequelae. Hemolysis: Immune Globulin Intravenous (Human) (IGIV) products can contain blood group antibodies which may act as hemolysins and induce in vivo coating of red blood cells with immunoglobulin, causing a positive direct antiglobulin reaction and, rarely, hemolysis (30-32). Hemolytic anemia can develop subsequent to IGIV therapy due to enhanced RBC sequestration (33) [See ADVERSE REACTIONS]. IGIV recipients should be monitored for clinical signs and symptoms of hemolysis [See PRECAUTIONS:Laboratory Tests]. Transfusion-Related Acute Lung Injury (TRALI): There have been reports of noncardiogenic pulmonary edema [Transfusion-Related Acute Lung Injury (TRALI)] in patients administered IGIV (34). TRALI is characterized by severe respiratory distress, pulmonary edema, hypoxemia, normal left ventricular function, and fever and typically occurs within 1-6 hours after transfusion. Patients with TRALI may be managed using oxygen therapy with adequate ventilatory support. IGIV recipients should be monitored for pulmonary adverse reactions. If TRALI is suspected, appropriate tests should be performed for the presence of anti-neutrophil antibodies in both the product and patient serum [See PRECAUTIONS: Laboratory Tests]. Thrombotic Events: Thrombotic events have been reported in association with IGIV (35-37)(See ADVERSE REACTIONS). Patients at risk may include those with a history of atherosclerosis, multiple cardiovascular risk factors, advanced age, impaired cardiac output, and/or known or suspected hyperviscosity. The potential risks and benefits of IGIV should be weighed against those of alternative therapies for all patients for whom IGIV administration is being considered. Baseline assessment of blood viscosity should be considered in patients at risk for hyperviscosity, including those with cryoglobulins, fasting chylomicronemia/markedly high triacylglycerols (triglycerides), or monoclonal gammopathies [See PRECAUTIONS: Laboratory Tests]. Laboratory Tests: If signs and/or symptoms of hemolysis are present after IGIV infusion, appropriate confirmatory laboratory testing should be done [See PRECAUTIONS]. If TRALI is suspected, appropriate tests should be performed for the presence of anti-neutrophil antibodies in both the product and the patient serum [See PRECAUTIONS]. Because of the potentially increased risk of thrombosis, baseline assessment of blood viscosity should be considered in patients at risk for hyperviscosity, including those with cryoglobulins, fasting chylomicronemia/markedly high triacylglycerols (triglycerides), or monoclonal gammopathies [See PRECAUTIONS]. Pregnancy Category C: Animal reproduction studies have not been conducted with Cytomegalovirus Immune Globulin Intravenous (Human). It is also not known whether Cytomegalovirus Immune Globulin Intravenous (Human) can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Cytomegalovirus Immune Globulin Intravenous (Human) should be given to a pregnant woman only if clearly needed. REFERENCES 2. Horowitz B, Wiebe ME, Lippin A, et al. Inactivation of viruses in labile blood derivatives. Transfusion 1985;25:516-522. 13. Bossell, et al. Safety of therapeutic immune globulin preparations with respect to transmission of human T-lymphotropic virus type III/lymphadenopathy-associated virus infection. MMWR 1996;35:231-233. 14. Wells MA, Wittek AE, Epstein JS, et al. Inactivation and partition of human T-cell lymphotropic virus type III, during ethanol fractionation of plasma. Transfusion 1986;26:210-213. 15. McIver J, Grady G. Immunoglobulin preparations. In: Churchill WH, and Kurtz SR, editors. Transfusion Medicine. Boston: Blackwell Scientific Publications; 1988. 16. Schneider L, Geha R. Outbreak of Hepatitis C associated with intravenous immunoglobulin administration - United States, October 1993 - June 1994. MMWR 1994;43:505-509. 17. Edwards CA, Piet MPJ, Chin S, et al. Tri(nButyl) phosphate detergent treatment of licensed therapeutic and experimental blood derivatives. Vox Sang 1987;52:53-59. 18. Cayco AV, Perazella MA, Hayslett JP. Renal insufficiency after intravenous immune globulin therapy: A report of two cases and an analysis of the literature. J Am Soc Nephrol 1997;8:1788-1794. 19. Cantu TG, Hoehn-Saric EW, Burgess KM, Racusen L, Scheel PJ. Acute renal failure associated with immunoglobulin therapy. Am J Kidney Dis 1995;25:228-234. 20. Hansen-Schmidt S, Silomon J, Keller F. Osmotic nephrosis due to high-dose intravenous immunoglobulin therapy containing sucrose (but not with glycine) in a patient with immunoglobulin A nephritis. Am J Kidney Dis 1996;28: 451-453. 21. Tan E, Hajinazarian M, Bay W, Neff J, Mendell JR. Acute renal failure resulting from intravenous immunoglobulin therapy. Arch Neurol 1993;50:137-139. 22. Winward D, Brophy MT. Acute renal failure after administration of intravenous immunoglobulin: Review of the literature and case report. Pharmacotherapy 1995;15:765-772. 23 Phillips AO. Renal failure and intravenous immunoglobulin [letter; comment]. Clin Nephrol 1992;37:217. 24. Lindberg HA, Wald MH, Barker MH. Renal changes following administration of hypertonic solutions. Arch Intern Med 1939;63:907-918. 25. Rigdon RH, Cardwell ES. Renal lesions following the intravenous injection of a hypertonic solution of sucrose. Arch Intern Med 1942;69:670-690. 26. Sekul E, Culper E, Dalakas M. Aseptic meningitis associated with high-dose intravenous immunoglobulin therapy; Frequency and risk factors. Ann Intern Med 1994;121:259-262. 27. Kato E, Shindo S, Eto Y, et al. Administration of immune globulin associated with aseptic meningitis. JAMA 1988; 259:3269-3270 28. Casteels Van Daele M, Wijindaele L, Hunnick K, et al. Intravenous immunoglobulin and acute aseptic meningitis. N Engl J Med 1990;323:614-615. 29. Scribner C, Kapit R, Philips E, et al. Aseptic meningitis and intravenous immunoglobulin therapy. Ann Intern Med 1994;121:305-306. 30. Copelan EA, Strohm PL, Kennedy MS, Tutschka PJ. Hemolysis following intravenous immune globulin therapy. Transfusion 1986;26:410-412. 31. Thomas MJ, Misbah SA, Chapel HM, Jones M, Elrington G, Newsom-Davis J. Hemolysis after high-dose intravenous Ig. Blood 1993;15:3789. 32. Reinhart WH, Berchtold PE. Effect of high dose intravenous immunoglobulin therapy on blood rheology. Lancet 1992; 339:662-664. 33. Kessary-Shoham H, Levy Y, Shoenfeld Y, Lorber M, Gershon H. In vivo administration of intravenous immunoglobulin (IVIg) can lead to enhanced erythrocyte sequestration. J Autoimmun 1999;13:129-135. 34. Rizk A, Gorson KC, Kenney L, Weinstein R. Transfusion-related acute lung injury after the infusion of IVIG. Transfusion 2001;41:264-268. 35. Dalakas MC. High-dose intravenous immunoglobulin and serum viscosity: risk of precipitant thromboembolic events. Neurology 1994;44:223-226. 36. Woodruff RK, Grigg AP, Firkin FC, Smith IL. Fatal thrombotic events during treatment of autoimmune thrombocytopenia with intravenous immunoglobulin in elderly patients. Lancet 1986;2:217-218. 37. Wolberg AS, Kon RH, Monroe DM, Hoffman M. Coagulation factor XI is a contaminant in intravenous immunoglobulin preparations. Am J Hematol 2000;65:30-34. Last reviewed on RxList: 10/30/2008
This monograph has been modified to include the generic and brand name in many instances.

Source: http://www.rxlist.com

Health Services in

Drug Database Online

Welcome to Senior Healthcare Matters an online drug guide and dictionary, here you can get drug information and definitaions for most popular pharmaceutical and medicinal drugs, and specifically Cytogam. Find what medications you are taking today.